ON THE EXISTENCE OF A SADDLE PODNT \mathbb{N} A
DIFFERENCE-DIFFERENTIAL ENCOUNTER-EVASION GAME
PMM Vol. 42, № 1,1978 , pp. 15-22
V. I. MAKSIMOV
(Sverdlovsk)
(Received may 10,1977)

A nonlinear difference-differential encounter-evasion game with a functional target is analyzed under integral constraints on the players' controls and functional constraints on segments of the controlled trajectories. Similarly to [1-3] a position procedure of control with a guide is constructed, solving the encounter and evasion problems. The existence of a saddle point in the game being analyzed is studied. The paper is closely related to the research in [1-9].

1. The following controlled system is specified:

$$
\begin{equation*}
x^{*}(t)=f\left(t, x_{t}(s)\right)+F_{1}\left(t, x_{t}(s)\right) u+F_{2}\left(t, x_{t}(s)\right) v, t_{0} \leqslant t \leqslant \theta \tag{1.1}
\end{equation*}
$$

Here x is the n-dimensional phase vector; u and v are the controls of the first and second players ; the vector functional $f(t, x(s))$ and the matrix functionals $F_{i}(t, x(s)), i=1,2$, are determined on the set $\left[t_{0}, \vartheta\right] \times H_{\omega}$, where H_{ω} is the Hilbert space of n-dimensional functions $x(s)$ with the norm
and

$$
\begin{aligned}
& \|x(s)\|_{\omega}=\left(\|x(0)\|^{2}+\int_{-\omega}^{0}\|x(s)\|^{2} d s\right)^{1 / 2} \\
& \|z\|=\left(z_{1}^{2}+\ldots+z_{n}^{2}\right)^{1 / 2}, \quad z \in E_{n}
\end{aligned}
$$

$$
f(t, x(s))=f\left(t, x\left(-\tau_{1}\right), \ldots, x\left(-\tau_{m}\right), \varphi((t, x(s)))\right.
$$

where $\varphi(t, x(s))$ is a functional continuous on $\left[t_{0}, \hat{\vartheta}\right]$, with values in E_{r}, satisfying (uniformly with respect to $t \in\left[t_{0}, \vartheta\right]$) a Lipschitz condition in $x(s)$ on each bounded set $D \subset H_{\omega}$, i.e.,

$$
\begin{aligned}
& \left\|\varphi\left(t, x_{1}(s)\right)-\varphi\left(t, x_{2}(s)\right)\right\| \leqslant L\left\|x_{1}(s)-x_{2}(s)\right\|_{\omega} \\
& L=L(D), \quad x_{j}(s) \in D, \quad j=1,2
\end{aligned}
$$

The functions $f\left(t, z_{1}, \ldots, z_{m}, z\right)$ and $F_{i}(t, z), i=1,2$, are continuous in all the arguments and satisfy a Lipschitz condition in $\left(z_{1}, \ldots, z_{m}, z\right)$ and z, respectively. The growth conditions

$$
\begin{aligned}
& \|f(t, x(s))\| \leqslant \zeta_{1}(t)+\zeta_{2}(t)\|x(s)\|_{\omega}+\sum_{j=1}^{m} \eta_{j}(t)\left\|x\left(-\tau_{j}\right)\right\| \\
& \left\|F_{i}(t, \quad x(s))\right\| \leqslant \zeta_{i+2}(t)+x_{i}\|x(s)\|_{\omega}
\end{aligned}
$$

where $\zeta_{i}(t)$ and $\eta_{j}(t)$ are nonnegative square-summable functions and $x_{i}=$ const $\geqslant 0$ are satisfied for any $x(s) \in H_{\omega}$. The control realizations $u[t]$ and $v[t]$ are subject to the constraints

$$
\begin{equation*}
\left(\int_{t_{0}}^{\infty}\|u[t]\|^{2} d t\right)^{1 / 2} \leqslant \lambda\left[t_{0}\right], \quad\left(\int_{t_{0}}^{\infty}\|v[t]\|^{2} d t\right)^{1 / 2} \leqslant v\left[t_{0}\right] \tag{1.2}
\end{equation*}
$$

The changes in constraints $\lambda[t]$ and $v[t]$ are determined by the equalities

$$
\begin{aligned}
& \lambda\left[t_{2}\right]=\lambda\left[t_{1}\right]-\left(\int_{t_{1}}^{t_{2}}\|u[t]\|^{2} d t\right)^{1 / 2} \\
& v\left[t_{2}\right]=v\left[t_{1}\right]-\left(\int_{t_{1}}^{t_{2}}\|v[t]\|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

Let $\left\{u(\cdot) ; t_{0}, \vartheta ; \lambda\left[t_{0}\right]\right\}$ and $\left\{v(\cdot) ; t_{0}, \vartheta ; v\left[t_{0}\right]\right\}$ be summable functions on [$\left.t_{0}, \vartheta\right]$, satisfying (1.2). The constraints on the right-hand side of system (1.1) guarantee the existence and continuability on [$\left.t_{0}, \vartheta\right]$ of the solution of the Cauchy problem in the sense of Caratheodory for any initial $t_{*} \in\left[t_{0}, \vartheta\right]$ and $x(s) \in H_{\omega}$ and for any functions $u(t) \in\left\{u(\cdot) ; t_{0}, \vartheta ; \lambda\left[t_{0}\right]\right\}$ and $v(t) \in\left\{v(\cdot) ; t_{0}, \vartheta ; v\left[t_{0}\right]\right\}$. The unexplained concepts and notation below are contained in [9].

An element $x_{\omega}(s) \in H_{\omega}$ and the nonempty closed sets $N \subset\left[t_{0}, \vartheta\right] \times H_{\omega}$ and

$$
M \subset\left[t_{0}-\omega+\tau, \vartheta\right] \times H_{\mu}(\mu=\mathrm{const} \geqslant 0, \quad \tau=\max \times
$$

$[\omega, \mu]$) are specified. The encounter problem is to choose a feedback control u ensuring that the phase trajectory's segment $x[t+s ; \mu]$ falls into $M(t)$ during the interval $\left[t_{0}-\omega+\tau, \vartheta\right]$, leaving the segment $x[t+s ; \omega]$ inside $N(t)$ for all
$t \in\left[t_{0}, \vartheta\right]$. It is assumed that the first player can meet with any method of forming the control v developing measurable realizations $v[t]$ satisfying (1.2). the evasion problem is to choose a feedback control v ensuring that the segment $x[t+s ; \mu]$ of phase trajectory $x[t]$ evades $M(t)$, leaving $x[t+s ; \omega]$ inside $N(t)$ for all
$t \in\left[t_{0}, \vartheta\right]$, or leading $x[t+s ; \omega]$ out of $N(t)\left(t_{0} \leqslant t \leqslant \boldsymbol{\theta}\right)$ before $x[t+$
$s ; \mu$] falls into $M(t)\left(t_{0}-\omega+\tau \leqslant t \leqslant \vartheta\right)$. It is assumed as well that the second player, in his own turn, can meet with any method of forming the control u developing measurable on $\left[t_{0}, \vartheta\right]$ realizations $u[t]$ satisfying (1.2). Encounter and evasion games for conflict-controlled systems described by functional-differential equations under instantaneous constraints on the controls were analyzed in $[3-5,9]$. The main difference between the present paper and those investigations is that here we study the case of integral constraints on the controls (see $[2,6-8]$.
2. We describe a procedure solving the encounter and evasion problems. The quadruple $p_{t_{*}}=\left\{t_{*}, \lambda_{*}, v_{*}, x_{*}(s ; \tau)\right\}$ is called the game's position, R is the space of positions, $R^{(1)}=E_{1} \times E_{1} \times H_{\tau} \quad$ and $p\left(t_{*}\right)=\left\{\lambda_{*}, v_{*}, x_{*}(s ; \tau)\right\}$. The symbol $\sigma_{\tau}\left(p_{t_{*}}, v(\cdot)\right), v(t) \in\left\{v(\cdot) ; t_{*}, \infty ; v_{*}\right\}$, denotes the set of elements $p_{t}=\{t, \lambda(t), \nu(t), x(t+s ; \tau)\}$ of the form

$$
\begin{aligned}
& \vartheta \geqslant t \geqslant t_{*}, \quad \lambda^{2}(t)=\lambda_{*}^{2}-J_{u}{ }^{2}\left(t_{*}, t\right), \quad v^{2}(t)=v_{*}^{2}-J_{v}^{2}\left(t_{*}, t\right) \\
& x(t)=x_{*}(0 ; \tau)+\int_{i_{*}}^{t}\left[f\left(\xi, x_{\xi}(s)\right)+F_{1}\left(\xi, x_{\xi}(s)\right) u(\xi)+\right. \\
& \left.\quad F_{2}\left(\xi, x_{\xi}(s)\right) v(\xi)\right] d \xi
\end{aligned}
$$

$$
\left(J_{u}\left(t_{*}, t\right)=\left(\int_{i_{*}}^{t}\|u(\xi)\|^{2} d \xi\right)^{1 / 2}, \quad J_{v}\left(t_{*}, t\right)=\left(\int_{i_{*}}^{t}\|v(\xi)\|^{2} d \xi\right)^{1 / 2}\right)
$$

$u(t)$ are all possible summable functions satisfying the inequality $J_{u}\left(t_{*}, \infty\right) \leqslant \lambda_{*}$. Let D be some set from R. We denote

$$
\begin{aligned}
& D\left(t_{*}, t^{*}\right)=\left\{p_{t}=\{t, \lambda, v, x(s ; \tau)\} \in D \mid t_{*} \leqslant t \leqslant t^{*}\right\} \\
& D\left(t_{*}\right)=\left\{\{\lambda, v, x(s ; \tau)\} \mid\left\{t_{*}, \lambda, v, x(s ; \tau)\right\} \in D\right\} \\
& D_{\delta}=\{\{t, \lambda, v, x(s ; \delta)\} \mid\{t, \lambda, v, x(s ; \tau)\} \in D, x(0 ; \delta)=x(0 ; \tau) \\
& x(s ; \delta)=x(s ; \tau) \text { for almost all } s \in[-\delta, 0]\}(\delta \in[0, \tau])\} \\
& \left.M^{*}=\{\{t, \lambda, v, x(s ; \mu)\} \mid\{t, x(s ; \mu)\} \in M, \lambda \geqslant 0, v \geqslant 0\}\right] \\
& N^{*}=\{\{t, \lambda, v, x(s ; \omega)\} \mid\{t, x(s ; \omega)\} \in N, \lambda \geqslant 0, v \geqslant 0\}
\end{aligned}
$$

The sets $W^{(u)}(t) \subset R^{(1)}, \quad t_{0} \leqslant t \leqslant \vartheta$, and $W_{\omega}{ }^{(u)}(t) \subset N^{*}(t)$ are said to be
u-stable if $W_{\mu^{(u)}}(\boldsymbol{v}) \subset M^{*}(\hat{v})$ or $W^{(u)}(\hat{v})=\varnothing$ and for any $t_{*} \in\left[t_{0}, \vartheta\right)$, $t^{*} \in\left(t_{*}, \theta 1, p\left(t_{*}\right)=\left\{\lambda_{*}, \nu_{*}, x_{*}(s ; \tau)\right\} \in W^{(u)}\left(t_{*}\right)\right.$ and $v(t) \in\{v(\cdot) ;$
$\left.t_{*}, \quad \infty ; \nu_{*}\right\}$ either $\sigma_{\tau}\left(t^{*} ; p_{t_{*}}, v(\cdot)\right) \cap W^{(u)}\left(t^{*}\right) \neq \varnothing$ or $\sigma_{\mu}\left(p_{t_{*}}, v(\cdot)\right) \cap$ $M^{*}\left(t_{*}, t^{*}\right) \neq \varnothing$. Here $\sigma_{\tau}\left(t^{*} ; p_{t,}, v(\cdot)\right)$ is the section of set $\sigma_{\tau}\left(p_{t *}, v(\cdot)\right)$ by the hyperplane $t=t^{*}$
We introduce $u_{*}\left(p_{t_{*}}, p_{t_{*}}^{*}, \delta\right)$ and $v^{*}\left(p_{t_{*}}, p_{t_{*}}^{*}, \delta\right)(\delta>0)$ as the functions on which,
respectively,

$$
\begin{aligned}
& \min _{u(\cdot)}^{\operatorname{me}}\left\{\int_{t_{*}}^{t_{*}+8} b^{\prime} u(t) d t \mid \int_{t_{*}}^{t_{*}+8}\|u(t)\|^{2} d t \leqslant \lambda^{2}-\lambda^{* 2}\right\} \text { for } \lambda>\lambda *, b \neq 0 \\
& \max _{v(\cdot)}^{t_{*}+8}\left\{\int_{t_{*}}^{t^{\prime}} c^{\prime} v(t) d t \mid \int_{t_{*}}^{t_{*}+8}\|v(t)\|^{2} d t \leqslant v^{*^{2}}-v^{2}\right\} \text { for } v^{*}>v, c \neq 0
\end{aligned}
$$

are achieved. Here

$$
\begin{aligned}
& p_{t_{*}}=\left\{t_{*}, \lambda, v, x(s ; \tau)\right\}, \quad p_{t_{*}}^{*}=\left\{t_{*}, \lambda^{*}, v^{*}, x^{*} \quad(s ; \tau)\right\} \\
& b=\left(x(0 ; \tau)-x^{*}(0 ; \tau)\right)^{\prime} F_{1}\left(t_{*}, x(s ; \tau)\right) \\
& c=\left(x(0 ; \tau)-x^{*}(0 ; \tau)\right)^{\prime} F_{2}\left(t_{*}, x(s ; \tau)\right)
\end{aligned}
$$

(the prime denotes transposition). If $\lambda \leqslant \lambda^{*}$ or $b=0\left(v^{*} \leqslant v\right.$ or $c=0$), we assume

$$
u_{*}\left(p_{t_{*}}, p_{t_{*}}^{*}, \delta\right)=0 \quad\left(v^{*}\left(p_{t_{*}}, p_{t_{*}}^{*}, \delta\right)=0\right)
$$

Let us define a procedure for the first player's control with the guide for specified initial position $p_{t_{*}}=\left\{t_{0}, \lambda\left[t_{0}\right], v\left[t_{0}\right], x_{0}(s ; \tau)\right\}$ and u-stable sets $W^{(u)}(t)$, $t_{0} \leqslant t \leqslant \vartheta, W^{(u)}\left(t_{0}\right) \neq \varnothing$. We take the element $p^{*}\left[t_{0}\right]=\left\{\lambda^{*}, v^{*}, x^{*}(s ;\right.$ $\tau)\} \in W^{(u)}\left(t_{0}\right)$ closest to $p\left[t_{0}\right]$ (for simplicity we assume that such an element exists; the general case is investigated by passing to a minimizing sequence as was done in $[4,5]$). Let Δ be a covering of interval $\left[t_{0}, \vartheta\right]$ by a system of half-open intervals

$$
\begin{aligned}
& {\left[\tau_{i}, \tau_{i+1}\right) \quad(i=0,1, \ldots, l(\Delta))} \\
& \tau_{0}=t_{0}, \tau_{i}=\boldsymbol{\vartheta}, \boldsymbol{\tau}_{i+1}-\tau_{i}=\delta=\mathbf{c o n s t}
\end{aligned}
$$

We assume that in [τ_{0}, τ_{1}) the motion of system (1.1) is generated by the constant control $u^{(0)}[t]=u_{*}\left(p_{t_{0}}, p_{t_{0}}{ }^{*}, \delta\right)\left(\tau_{0} \leqslant t<\tau_{1}\right)$ in pair with some realization $v[t] \in$ $\left\{v(\cdot) ; t_{0}, \infty ; v\left[t_{0}\right]\right\}$. We then determine the position $p_{\tau_{1}}=\left\{\tau_{1}, \lambda \mid \tau_{1}\right], v\left[\tau_{1}\right]$, $\left.x\left[\tau_{1}+s ; \tau\right]\right\}$ at instant τ_{1}. We select the guide's position $p_{\tau_{1}}{ }^{*}$ from the condition

$$
\begin{aligned}
& p^{*}\left[\tau_{1}\right] \equiv W^{(u)}\left(\tau_{1}\right) \cap \sigma_{\tau}\left(\tau_{1} ; p_{\tau_{0}}^{*}, v^{(0)}[\cdot]\right) \\
& \left(v^{(0)}[t]=v^{*}\left(p_{t_{0}}, p_{t_{0}}^{*}, \delta\right), \tau_{0} \leqslant t<\tau_{1}\right)
\end{aligned}
$$

assuming that this intersection is not empty. We define the first player's control on $\left[\tau_{1}, \tau_{2}\right)$ by the relation $u^{(1)}[t]=u_{*}\left(p_{\tau_{1}}, p_{\tau_{1}}{ }^{*}, \delta\right)\left(\tau_{1} \leqslant t<\tau_{2}\right)$. The position
$p_{\tau_{2}}$ is realized as a result of the choice of control $u^{(1)}[t]$ and of some control
$v[t]$. We define the guide's position at instant $t=\tau_{2}$ from the condition

$$
\begin{aligned}
& p^{*}\left[\tau_{2}\right] \in W^{(u)}\left(\tau_{2}\right) \cap \sigma_{\tau}\left(\tau_{2} ; p_{\tau_{1}}{ }^{*}, v^{(1)}[\cdot]\right) \\
& \left(v^{(1)}[t]=v^{*}\left(p_{\tau_{1}}, p_{\tau_{1}}{ }^{*}, \delta\right), \tau_{1} \leqslant t<\tau_{2}\right)
\end{aligned}
$$

assuming once again that this intersection is not empty. If

$$
W^{(u)}\left(\tau_{i+1}\right) \bigcap \sigma_{\tau}\left(\tau_{i+1} ; p_{\tau_{i}}{ }^{*}, v^{(i)}[\cdot]\right) \neq \varnothing \quad \text { for all } \quad i=0, \ldots, l-1
$$

we effect this procedure up to the instant $t=\boldsymbol{\vartheta}$.
Let τ_{f} be the instant when first

$$
W^{(u)}\left(\tau_{j}\right) \cap \sigma_{\tau}\left(\tau_{j} ; p_{\tau_{j-1}}^{*}, v^{(j-1)}[\cdot]\right)=\varnothing
$$

Then $M^{*}\left(\tau_{j-1}, \tau_{j}\right) \cap \sigma_{\mu}\left(p_{\tau_{j-1}}^{*}, v^{(j-1)}[\cdot]\right) \neq \varnothing$. Hence an instant $\quad \tau_{\vartheta} \in\left[\tau_{j-1}, \tau_{j}\right]$ exists when the guide's position $p_{\tau_{*}}{ }^{*}=\left\{\tau_{*}, \lambda_{*}, v_{*}, x\left[\tau_{*}+s ; \tau\right]\right\}$ canbe determined from the conditions

$$
\begin{aligned}
& p_{\tau_{*}}^{*} \in \sigma_{\tau}\left(p_{\tau_{j-1}}^{*}, v^{(j-1)}[\cdot]\right) \\
& \left\{\lambda_{*}, v_{*}, x\left[t_{*}+s ; \mu\right]\right\} \in M\left(\tau_{*}\right)
\end{aligned}
$$

At instant $t=\tau_{j}$ we take an arbitrary element from $\tau_{j} \times \sigma_{\tau}\left(\tau_{j} ; p_{\tau_{*}}{ }^{*}, v^{j-1}[\cdot]\right)$ as the guide's position $p_{\tau_{j}}{ }^{*}$. Further, we define the controls $u^{(i)}[t]$ and $v^{(i)}[t]$ ($\tau_{i} \leqslant t<\tau_{i+1}, j \leqslant i \leqslant l-1$) by the relations

$$
u^{(i)}[t]=u_{*}\left(p_{\tau_{i}}, p_{\tau_{i}}^{*}, \delta\right), \quad v^{(i)}[t]=v^{*}\left(p_{\tau_{i}}, p_{\tau_{i}}^{*}, \delta\right)
$$

and we choose the guide's position arbitrarily from the sets $\tau_{i+1} \times \sigma_{\tau}\left(\tau_{i+1} ; p_{\tau_{i}}{ }^{*}\right.$,
$\left.v^{(i)}[\cdot]\right)$. The motion constructed of system (1.1) is denoted

$$
\begin{aligned}
& x_{\Delta}[t]=x\left[t ; p_{t 0}, u_{\delta}, v\right] \\
& u_{\delta}[t]=u^{(i)}[t], \quad \tau_{i} \leqslant t<\tau_{i+1}, \quad i=0 \ldots, l-1
\end{aligned}
$$

Function $x[t], t_{0} \leqslant t \leqslant \vartheta$, is called a motion of system (1,1) if there exists a se quence of functions $x_{\Delta_{k}}[t]=x\left[t ; p_{t_{0}}{ }^{(k)}, u_{\delta_{k}}, v_{k}\right] \quad$ satisfying the conditions

$$
\begin{align*}
& x_{\Delta_{k}}[t] \rightarrow x[t] \text { in } C\left(\left[t_{0}, \vartheta\right]\right) \tag{2.1}\\
& \left(\tau_{i+1}(k)-\tau_{i}(k)\right) \rightarrow 0
\end{align*}
$$

$$
\begin{aligned}
& p_{t_{0}}^{(k)} \rightarrow p_{t_{0}} \quad \text { as } \quad k \rightarrow \infty \\
& p_{t_{0}}^{(k)}=\left\{t_{0}, \lambda_{0}^{(k)}, v_{0}^{(k)}, x_{0}^{(k)}(s ; \tau)\right\}
\end{aligned}
$$

It can be shown that this motion (we denote it $x\left[t ; p_{t_{0}}, W^{(u)}\right]$) exists. Without loss of generality we assume $M(\vartheta) \neq \varnothing$.

Lemma 2.1. If u-stable sets $W^{(u)}(t), t_{0} \leqslant t \leqslant \vartheta$, exist such that $p\left[t_{0}\right]$ $\in W^{(u)}\left(t_{0}\right)$ and $W_{\mu^{(u)}}(\vartheta) \subset M^{*}(\vartheta)$, then for any motion $x[t]=x\left[t ; p_{t_{0}}, W^{(u)}\right]$ we can find an instant $t_{*} \in\left[t_{0}-\omega+\tau, \vartheta\right]$ when first $\left\{t_{*}, x\left[t_{*}+s ; \mu\right]\right\} \in M$, and $\{t, x[t+s ; \omega]\} \in N$ for $t \in\left[t_{0}, t_{*}\right]$.

We present the lemma's proof. Let Δ_{k} be a covering of interval $\left[t_{0}, \vartheta\right]$ by the intervals $\tau_{i}(k) \leqslant t<\boldsymbol{\tau}_{i+1}(k), i=0, \ldots, l_{k}, \quad \tau_{0}(k)=t_{0}, \tau_{l_{k}}=\vartheta, \quad l_{k}=l\left(\Delta_{k}\right) ;$ let $x_{\Delta_{k}}[t]=x_{\Delta_{k}}\left[t ; p_{t_{0}}(k), u_{\delta_{k}}, v_{k}\right]$ be the phase vector of system (1.1) realized at in stant t; let $x_{\Delta_{k}}^{*}[t]$ be the phase vector of the guide, whose motion was formed jointly with motion ${ }^{x_{\Delta_{k}}}[t]$; let $u_{\delta_{k}}{ }^{*}[t]$ be the first player's control whose action realizes motion $x_{\Delta_{k}}{ }^{*}[t]$.

It can be verified that the equality

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{i=0}^{m-1}\left(\int_{i \zeta}^{(i+1) \zeta}\|\varphi(t)\| d t\right)^{2}=0, \quad \zeta=\frac{\theta-t_{0}}{m} \tag{2.2}
\end{equation*}
$$

is valid for any n-dimensional vector function $\varphi(t) \in L^{2}\left[t_{0}, \theta\right]$. Proceeding from the method of forming motions $x_{\Delta_{k}}[t]$ and $x_{\Delta_{k}}{ }^{*}[t], \quad$ using (2.2) we establish the relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \max _{i}\left\{\left\|r_{k, i}\right\|, \quad i=0, \ldots, l_{k}\right\}=0 \tag{2.3}
\end{equation*}
$$

Here

$$
\begin{aligned}
& r_{k, i}=\left\|x_{\Delta_{k}}\left[\tau_{i}(k)+s ; \tau\right]-x_{\Delta_{k}}^{*}\left[\tau_{i}(k)+s ; \tau\right]\right\|_{\tau}+ \\
& \sum_{j=1}^{m} \int_{-\tau_{j}}^{0}\left\|x_{\Delta_{k}}\left[\tau_{i}(k)+s ; \tau\right]-x_{\Delta_{k}}^{*}\left[\tau_{i}(k)+s ; \tau\right]\right\| d s+ \\
& 2\left(x_{\Delta_{k}}\left[\tau_{i}(k)\right]-x_{\Delta_{k}}^{*}\left[\tau_{i}(k)\right]\right)^{\prime}\left(\int_{\tau_{i-1}(k)}^{\tau_{i}(k)} F_{1}\left(\xi, x_{\Delta_{k}}^{*}[\xi+s]\right) u_{\delta_{k}}^{*}[\xi] d \xi-\right. \\
& \quad \int_{\tau_{i-1}(k)}^{\tau_{i}(k)} F_{2}\left(\dot{\xi}, x_{\Delta_{k}}[\xi+s]\right) v_{k}[\xi] d \xi
\end{aligned}
$$

The lemma's validity follows from (2.3).
Let $\Phi^{*}=\left\{p_{t}=\{t, \lambda, v, x(s ; \tau)\} \mid\{t, x(s ; \tau)\} \in \Phi, \lambda \geqslant 0, v \geqslant 0\right\}$ $\Psi^{*}=\left\{p_{t}=\{t, \lambda, v, x(s ; \tau)\} \mid\{t, x(s ; \tau)\} \in \Psi, \lambda \geqslant 0, v \geqslant 0\right\}$
where Φ and Ψ are closed sets in $E_{1} \times H_{\tau}$, satisfying the conditions ($\alpha>0$)

$$
\bar{\Phi}_{\mu}^{\alpha} \cap M=\varnothing, \quad \bar{\Psi}_{\omega}^{\alpha} \cap N=\varnothing
$$

The sets $W^{(v)}(t) \subset R^{(1)}, \quad t_{0} \leqslant t \leqslant \vartheta, \quad W^{(p)}(t) \subset \Phi^{*}(t)$, are said to be $v-$ stable if for any $t_{*} \in\left[t_{0}, \vartheta\right), t^{*} \in\left(t_{*}, \vartheta\right], p\left(t_{*}\right)=\left\{\lambda_{*}, v_{*}, x_{*}(s ; \tau)\right\} \in W^{(v)}\left(t_{*}\right)$
and $u(t) \in\left\{u(\cdot) ; t_{*}, \infty ; \lambda_{*}\right\}$ either $\sigma_{\tau}\left(t^{*} ; p_{t_{*}}, u(\cdot)\right) \cap W^{(v)}\left(t^{*}\right) \neq \varnothing$ or $\sigma_{*}\left(p_{t_{*}}, u(\cdot)\right) \cap \Psi^{*}\left(t_{*}, t^{*}\right) \neq \varnothing$.

We introduce $u^{*}\left(p_{t_{*}}, p_{t_{*}}^{*}, \delta\right)$ and $v_{*}\left(p_{t_{*}}, p_{t_{*}}{ }^{*}, \delta\right)$ as the functions on which, respectively,

$$
\begin{aligned}
& \max _{u(\cdot)}\left\{\int_{t_{*}}^{t_{*}^{+}} b^{\prime} u(t) d t \mid \int_{t_{*}}^{t_{*}^{+}+\delta}\|u(t)\|^{2} d t \leqslant \lambda^{*^{2}}-\lambda^{2}\right\} \text { for } \lambda^{*}>\lambda, b \neq 0 \\
& \min _{v(\cdot)}\left\{\int_{t_{*}}^{*+\delta} c^{\prime} v(t) d t \mid \int_{t_{*}}^{t_{*}^{+\delta}}\|v(t)\|^{2} d t \leqslant v^{2}-v^{*^{2}}\right\} \text { for } v>v^{*}, c \neq 0
\end{aligned}
$$

are achieved. If $\lambda \geqslant \lambda^{*}$ or $b=0\left(v^{*} \geqslant v\right.$ or $\left.c=0\right)$, then we assume $u^{*}\left(p_{t_{*}}, p_{t_{*}}{ }^{*}, \boldsymbol{\delta}\right)=0\left(v_{*}\left(p_{t_{*}}, p_{t_{*}}^{*}, \mathrm{\delta}\right)=0\right)$.

Let us define a procedure for the second player's control with the guide for v-stable sets $W^{(v)}(t), t_{0} \leqslant t \leqslant \vartheta$. We form the second player's control as follows:

$$
v_{\delta}[t]=v_{*}\left(p_{\tau_{i}}, p_{\tau_{i}}^{*}, \delta\right) \quad\left(\tau_{i} \leqslant t<\tau_{i+1}, i=0, \ldots, l-1\right)
$$

Here $p_{\tau_{i}}$ is the game's position and $p_{\tau_{i}}{ }^{*}$ is the guide's position realized at instant $t=\tau_{i}$. The controls

$$
u_{\delta}^{*}[t]=u^{*}\left(p_{\tau_{i}}, p_{\tau_{i}}^{*}, \delta\right)=u^{(i)}[t], \quad \tau_{i} \leqslant t<\tau_{i+1}
$$

are used to determine the guide's positions. As the guide's initial position $p_{t_{0}}{ }^{*}$ we select the element of set $t_{0} \times W^{(v)}\left(t_{0}\right)$ closest to $p_{t_{0}} \quad$ (once again we assume the existence of such an element). Next, we determine the positions $p_{r_{i}}{ }^{*}$ successively from the condition

$$
p^{*}\left[\tau_{i}\right] \in \sigma_{\tau}\left(\tau_{i} ; p_{\tau_{i-1}}^{*}, u^{(i-1)}[\cdot]\right) \cap W^{(v)}\left(\tau_{i}\right)
$$

either up to the instant $\tau_{l}=\ddot{\vartheta}$ if all these intersections are nonempty or up to the instant τ_{j} for which this intersection first is empty. The position $p_{\tau_{j}}{ }^{*}$ at instant τ_{j} is determined from the condition

$$
p^{*}\left[\tau_{j}\right] \in \sigma_{\tau}\left(\tau_{j} ; p_{\tau_{*}}^{*}, u^{(j-1)}[\cdot]\right)
$$

where $p^{*}\left[\tau_{*}\right] \in \sigma_{\tau}\left(\tau_{*} ; p_{\tau_{j-1}}^{*}, u^{(j-1)}[\cdot]\right) \cap \Psi^{*}\left(\tau_{*}\right), \tau_{j-1} \leqslant \tau_{*} \leqslant \tau_{j}$. The existence of such an element $p_{\tau_{*}}{ }^{*}$ follows from the inclusion $p^{*}\left[\tau_{j-1}\right] \in W^{(v)}\left(\tau_{j-1}\right)$ and from the definition of v-stability of sets $W^{(v)}(t)$. Next, as $p_{\tau_{i}}{ }^{*}(j<i \leqslant l)$ we choose arbitrary elements from the sets $\tau_{i} \times \sigma_{\tau}\left(\tau_{i} ; p_{\tau_{i-1}^{*}}^{*}, u^{(i-1)}[\cdot]\right)$.

By $x_{\Delta}[t]=x\left[t ; p_{t_{0}}, u, v_{\delta}\right]$ we denote the motion of system (1.1), realized by the second-player's control $v_{\delta}[t], t_{0} \leqslant t \leqslant \vartheta$, in pair with some control $u[t] \in$ $\left\{u(\cdot) ; t_{0}, \infty ; \lambda\left[t_{0}\right]\right\}$. By $x\left[t ; p_{t_{0}}, W^{(p)}\right]$ we denote the function $x[t]$, $t_{0} \leqslant t \leqslant \vartheta$ generated by the sequence of motions $x_{\Delta_{k}}[t]=x\left[t ; p_{t_{0}}{ }^{(k)}, u_{k}, v_{\delta_{k}}\right]$ satisfying (2.1).

Analogously to Lemma 2.1 we can prove
Lemma 2.2. If $\quad v$-stable sets $W^{(v)}(t), t_{0} \leqslant t \leqslant \vartheta$ exist such that $p\left[t_{0}\right]$ $\in W^{(v)}\left(t_{0}\right)$, then for any motion $x[t]=x\left[t ; p_{t_{0}}, W^{(v)}\right]$ the element $\{t, x[t+$ $s ; \tau]\}$ remains in domain Φ up to instant $\hat{\vartheta}$ or up to the instant τ_{*} when first $\left\{\tau_{*}, x\left[\tau_{*}+s ; \tau\right]\right\} \in \Psi$.

Let $\dot{W}_{*}{ }^{(v)}(t), t_{0} \leqslant t \leqslant \vartheta$, be a maximal $\quad v$-stable system of sets.

We denote $W_{*}{ }^{(u)}(t)=R^{(1)} \backslash W_{*}{ }^{(v)}(t)$.
Theorem 2.1. Forany initial game position $p_{t 0}$:either $p\left[t_{0}\right] \in W_{*}{ }^{(u)}\left(t_{0}\right)$, and then the encounter problem has a solution which is provided by a procedure of control with a guide defined for u-stable sets $W_{*}{ }^{(u)}(t), t_{0} \leqslant t \leqslant \vartheta$, or $p\left[t_{0}\right] \not \equiv$
$W_{*}{ }^{(u)}\left(t_{0}\right)$, and then the evasion problem has a solution, it being that $p\left[t_{0}\right] \in$ $W^{(v)}\left(t_{0}\right)$, where $W^{(v)}(t), t_{0} \leqslant t \leqslant \vartheta$, are certain v-stable sets, and this solution is provided by a procedure of control with a guide, defined for the sets $W^{(v)}(t)$, $t_{0} \leqslant t \leqslant \theta$.

The theorem can be proved along the plan of the proof of Theorem 3.3 in [2].
3. Let us assume that $N=\left[t_{0}, \vartheta\right] \times H_{\infty}$ and that the first player measures the phase states of system (1.1) inaccurately. That is, at the instant t he knows the quantity $w[t+s ; \tau]$ connected with the realization $x[t+s ; \tau]$ by the relation

$$
\|w[t+s ; \tau]-x[t+s ; \tau]\|_{\tau} \leqslant \alpha, \quad t_{0} \leqslant t \leqslant \theta, \alpha=\text { const } \geqslant 0
$$

We define the motion $x_{0}\left[t ; p_{t 0}, W^{(u)}\right]$ similarly to motion $x\left[t ; p_{t 0,} W^{(u)}\right]$. The difference is that we equate the controls $u^{(i)}[t]$ and $v^{(i)}[t]$ when $t \in\left(\tau_{i}, \tau_{i+1}\right)$

$$
\begin{aligned}
& u^{(i)}[t]=u_{*}\left(p_{\tau_{i}}^{(0)}, p_{\tau_{i}}^{*}, \delta\right), \quad v^{(i)}[t]=v^{*}\left(p_{\tau_{i}}^{(0)}, p_{\tau_{i}}^{*}, \delta\right) \\
& p_{t}^{(0)}=\{t, \lambda[t], v[t], w[t+s ; \tau]\}
\end{aligned}
$$

Lemma 3.1. Let closed u-stable sets $W^{(u)}(t) \subset R^{(1)}, t_{0} \leqslant t \leqslant \theta$, exist such that $p\left[t_{0}\right] \in W^{(u)}\left(t_{0}\right)$ and $W_{\mu^{(u)}}(\theta) \subset M^{*}(\vartheta)$. Then, for any number $\varepsilon>0$ there exists a number $\alpha>0$ such that for any motion $x_{0}\left[t ; p_{t_{0}}, W^{(v)}\right]$ we can find an instant $t_{*} \in\left[t_{0}-\omega+\tau, \vartheta\right]$ when first $\left\{t_{*}, x\left[t_{*}+s ; \mu\right]\right\} \in \bar{M}^{\epsilon}$.

The lemma's proof is analogous to that of Lemma 2.1.
We note that when $N=\left[t_{0}, \vartheta\right] \times H_{\infty}$ the condition

$$
\sigma_{\tau}\left(p_{t *}, u(\cdot)\right) \cap \Psi^{*}\left(t_{*}, t^{*}\right) \neq \varnothing
$$

should be dropped in the definition of the v-stability of sets $W^{(v)}(t), t_{0} \leqslant t \leqslant \theta$. If at instant t the second player also knows the quantity $w[t+s ; \tau]$, then we can define motion $x_{0}\left[t ; p_{t 0}, W^{(v)}\right]$ similarly to motion $x\left[t ; p_{t 0}, W^{(v)}\right]$ by setting

$$
u_{\delta}^{*}[t]=u^{*}\left(p_{\tau_{i}}^{(0)}, p_{\tau_{i}}^{*}, \delta\right), \quad v_{\delta}[t]=v_{*}\left(p_{\tau_{i}}^{(0)}, p_{t_{i}} * \delta\right)
$$

for $t \in\left[\tau_{i}, \tau_{i+1}\right)$
Then there holds
Lemma 3.2. Let v-stable sets $W^{(0)}(t), t_{0} \leqslant t \leqslant \theta$, and $p\left[t_{0}\right] \in W^{(v)}$ $\left(t_{0}\right)$ be specified. Numbers $\varepsilon>0$ and $\alpha_{0}>0$ exist such that the condition

$$
x_{0}[t+s ; \mu] \notin \bar{M}^{2}(i), \quad t_{0}-\omega+\tau \leqslant t \leqslant \theta
$$

is specified for the motions $x_{0}\left[t ; p_{t 0}, W^{(v)}\right]$ if $\alpha \leqslant \alpha_{0}$.
Suppose that by choosing a control $u[t]$ the first player strives to minimize the value of some continuous functional $\varphi(x(s ; \mu))$ at the instant θ, while choosing a control $v[t]$ the second player strives to maximize at instant ϑ the value of $\varphi(x(s ; \mu))$ on the trajectories of system (1.1). The functional $\varphi(x(s ; \mu))$ is
defined on space H_{μ}.
Relying on Theorem 2.1, just as in [1] (see Sect. 18,97) we can validate
Theorem 3.1. For any initial position $p_{t_{0}}$ a number c_{0}, u-stable sets
$W^{(u)}(t), t_{0} \leqslant t \leqslant \vartheta$, and v-stable sets $W^{(v)}(t), t_{0} \leqslant t \leqslant \vartheta$ exist such that the relation

$$
\varphi\left(x\left[\vartheta+s ; p_{t_{0}}, W^{(u)}\right]\right) \leqslant c_{0} \leqslant \varphi\left(x\left[\vartheta+s ; p_{t_{0},} W^{(v)}\right]\right)
$$

holds.
The author thanks Iu. S. Osipov for posing the problem and for valuable advice.

REFERENCES

1. Krasovskii, N.N. and Subbotin, A. I., Position Differential Games. Moscow, "Nauka", 1974.
2. Subbotin, A. I. and Ushakov, V.N., Altemative for an encounter - evasion differential game with integral constraints on the player's controls. PMM, Vol. 39, No. 3, 1975.
3. Osipov, Iu. S. and Alesenko, L. P., On the regularization of controls in a difference-differential encounter-evasion game. Differents. Uravnen. Vol. 12. No. 6, 1976.
4. Osipov, Iu. S., Differential games for systems with aftereffect. Dok1. Akad. Nauk SSSR, Vol. 196, No. 4, 1971.
5. Osipov, Iu. S., A differential guidance game for systems with aftereffect . PMM, Vol. 35, No, 1, 1971.
6. Pshenichnyi, B. N. and Oponchuk, Iu. N., Linear differential games with integral constraints. Izv. Akad. Nauk SSSR, Tekhn, Kibernet., No. 1, 1968.
7. Nikol'skii, M. S., Direct method in linear differential games with general integral constraints. Differents. Uravnen., Vol. 8, No. 6, 1972.
8. Ushakov, V.N., Extremal strategies in differential games with integral constraints. PMM, Vol. 36, No. 1, 1972.
9. Maksimov, V.I., An altemative in the difference-differential game of ap-proach-evasion with a functional target. PMM, Vol. 40 , No. 6, 1976.
